F1 CAR SIMULATION
In one of my previous posts, I covered a full body automotive steady state simulation with resolved boundary layers, whose non-dimensionless wall distance y+ was less than 1. In the following simulation, I have used wall function to run a kOmegaSST turbulence model on a boundary layer-less grid. Again, a steady state solver was used to compute the force Coefficients of a formula 1 car. The car model was downloaded from Grab cad: https://grabcad.com/library The average value of the drag coefficient was found to be 0.72 . The converged drag plot can be accessed below. Here is a worthwhile observation, while using snappyHexMesh tool to create a mesh which employs wall function, sometimes it is required that at least one boundary layer be extruded in order to fall within the range 30 < y+ < 300. Again, this depends on the nature of the background mesh and the level of refinement used inside the fluid domain. Kindly write to me if you require assistance in the case set-up. Th